Influence of Metal Dopant (Cu, Co, Sm, Sn) on Ni/ScSZ Thin Film Anode in Solid Oxide Fuel Cell
DOI:
https://doi.org/10.58764/j.jrdti.2024.2.81Keywords:
anode modification, fuel cell, metal alloying, solid oxide fuel cell, surface infiltrationAbstract
Solid oxide fuel cells (SOFCs) are highly efficient electrochemical conversion devices that generates electrical energy through electrochemical reaction of gaseous fuel. Doping on the SOFC anode catalyst has the potential to increase the performance and tolerance of SOFC towards hydrocarbon fuel. An understanding of the doping effect of different type of catalyst on the SOFC anode is essential due to the differences in the characteristics of the catalysts and the impact on the existing anode catalyst microstructure with the dopant addition. This study is aimed to identify the effect of metal catalysts doping on the microstructure and electrochemical performance of Ni/ScSZ thin composite anodes on the SOFC electrolyte supported cell with surface infiltration method. The impact on the anode catalyst’s microstructure, distribution of element and elemental analysis was carried out using SEM-EDX and XRD analysis. The electrochemical performance of the cells were evaluated by the maximum power density and open-circuit-voltage (OCV) from the current-voltage (iV) measurement in hydrogen and in biogas. The results of this study found that the presence of dopant introduction of 5wt% dopant/Ni can be detected by EDX, but not with lower concentration. For Sn, Sm and Cu doped cells, the XRD analysis detected Ni3Sn, Ni2Sm and Cu0.81Ni0.19 alloy formed, respectively. Doping by 0.5 wt% of Sn/Ni and 5wt% of Sm/Ni improved the electrochemical performance in hydrogen by three-fold and two-fold (184mW/cm2 and 100mW/cm2, respectively) compared to 49 mW/cm2 in the undoped cell. Addition of Cu showed the best tolerance with biogas operation. Co addition on the other hand posed a negative impact and the microstructure of the anode become overly dense. This work observed different impact dopant by various dopant on the cell’s porosity which influenced the electrochemical reaction. As the result with biogas deviates from previous investigation with anode supported cell, it can be concluded that for electrolyte supported cell with thin anode which have limited catalytic area as the reforming reaction reaction compete with the triple phase boundary area for electrochemical reaction.
References
» click to expand references listAlzate-Restrepo, V., & Hill, J. M. (2010). Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds. Journal of Power Sources, 195(5), 1344-1351. https://doi.org/10.1016/j.jpowsour.2009.09.014 DOI: https://doi.org/10.1016/j.jpowsour.2009.09.014
Andarini, R. P. (2017). Ex-situ Characterisation of Solid Oxide Fuel Cell Operating on Biogas using Tin Anode-infiltration. University of Birmingham.
Arifin, N. A., Afifi, A. A., Samreen, A., Hafriz, R. S. R. M., & Muchtar, A. (2023). Characteristic and challenges of scandia stabilized zirconia as solid oxide fuel cell material - In depth review. Solid State Ionics, 399, 116302. https://doi.org/10.1016/J.SSI.2023.116302 DOI: https://doi.org/10.1016/j.ssi.2023.116302
Arifin, N. A., Shamsuddin, A. H., & Steinberger-wilckens, R. (2021). Evaluating the Drop of Electrochemical Performance of Ni/YSZ and Ni/ScSZ SOFCs Operated with Dry Biogas. International Journal of Energy Research, 45(May), 1-13. https://doi.org/10.1002/er.6233
Arifin, N. A., Shamsuddin, A. H., & Steinberger-Wilckens, R. (2021). Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas. International Journal of Energy Research, 45(4), 6405-6417. https://doi.org/10.1002/er.6233 DOI: https://doi.org/10.1002/er.6233
Arifin, N. A., Troskialina, L., Shamsuddin, A. H., & Steinberger-Wilckens, R. (2020). Effects of Sn doping on the manufacturing, performance and carbon deposition of Ni/ScSZ cells in solid oxide fuel cells. International Journal of Hydrogen Energy, 45(51), 27575-27586. https://doi.org/10.1016/j.ijhydene.2020.07.071 DOI: https://doi.org/10.1016/j.ijhydene.2020.07.071
Azim Jais, A., Muhammed Ali, S. A., Anwar, M., Rao Somalu, M., Muchtar, A., Wan Isahak, W. N. R., Brandon, N. P. (2017). Enhanced ionic conductivity of scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte synthesized by the microwave-assisted glycine nitrate process. Ceramics International, 43(11), 8119-8125. https://doi.org/10.1016/j.ceramint.2017.03.135 DOI: https://doi.org/10.1016/j.ceramint.2017.03.135
Cai, G., Liu, R., Zhao, C., Li, J., Wang, S., & Wen, T. (2011). Anode performance of Mn-doped ceria-ScSZ for solid oxide fuel cell. Journal of Solid State Electrochemistry, 15(1), 147-152. https://doi.org/10.1007/s10008-010-1079-8 DOI: https://doi.org/10.1007/s10008-010-1079-8
Chiodelli, G., & Malavasi, L. (2013). Electrochemical open circuit voltage (OCV) characterization of SOFC materials. Ionics, 19(8), 1135-1144. https://doi.org/10.1007/s11581-013-0843-z DOI: https://doi.org/10.1007/s11581-013-0843-z
Cimenti, M., & Hill, J. M. (2009). Direct utilization of liquid fuels in SOFC for portable applications: Challenges for the selection of alternative anodes. Energies, 2(2), 377-410. https://doi.org/10.3390/en20200377 DOI: https://doi.org/10.3390/en20200377
Guo, T., Dong, X., Shirolkar, M. M., Song, X., Wang, M., Zhang, L., Wang, H. (2014). Effects of Cobalt Addition on the Catalytic Activity of the Ni-YSZ Anode Functional Layer and the Electrochemical Performance of Solid Oxide Fuel Cells. 2-10. DOI: https://doi.org/10.1021/am504148m
Jais, A. A., Somalu, M. R., Muchtar, A., & Isahak, W. N. R. W. R. W. (2019). Carbon Deposition Properties of Ni0.5M0.5/10Sc1CeSZ (M = Cu, Co and Fe) Cermet Anode for Dry Reforming Methane-Fuelled Solid Oxide Fuel Cells. IOP Conference Series: Earth and Environmental Science, 268(1), 0-6. https://doi.org/10.1088/1755-1315/268/1/012138 DOI: https://doi.org/10.1088/1755-1315/268/1/012138
Jais, Abdul Azim, Ali, S. A. M., Anwar, M., Somalu, M. R., Muchtar, A., Isahak, W. N. R. W., Brandon, N. P. (2020). Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane. Journal of Solid State Electrochemistry, 24(3), 711-722. https://doi.org/10.1007/s10008-020-04512-6 DOI: https://doi.org/10.1007/s10008-020-04512-6
Jamil, Z., Ruiz-Trejo, E., Boldrin, P., & Brandon, N. P. (2016). Anode fabrication for solid oxide fuel cells: Electroless and electrodeposition of nickel and silver into doped ceria scaffolds. International Journal of Hydrogen Energy, 41(22), 9627-9637. https://doi.org/10.1016/j.ijhydene.2016.04.061 DOI: https://doi.org/10.1016/j.ijhydene.2016.04.061
Jiang, Z., Arifin, N. A., Mardle, P., & Steinberger-Wilckens, R. (2019). Electrochemical Performance and Carbon Resistance Comparison between Tin, Copper and Silver-Doped Nickel/Yttria-Stabilized Zirconia Anodes SOFCs Operated with Biogas. Journal of The Electrochemical Society, 166(6), F393-F398. https://doi.org/10.1149/2.1011906jes DOI: https://doi.org/10.1149/2.1011906jes
Kan, H., Hyun, S. H., Shul, Y.-G., & Lee, H. (2009). Improved solid oxide fuel cell anodes for the direct utilization of methane using Sn-doped Ni/YSZ catalysts. Catalysis Communications, 11(3), 180-183. https://doi.org/10.1016/j.catcom.2009.09.021 DOI: https://doi.org/10.1016/j.catcom.2009.09.021
Kan, H., & Lee, H. (2010). Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC. Applied Catalysis B: Environmental, 97(1), 108-114. https://doi.org/10.1016/j.apcatb.2010.03.029 DOI: https://doi.org/10.1016/j.apcatb.2010.03.029
McIntosh, S., Vohs, J. M., & Gorte, R. J. (2002). An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes. Electrochimica Acta, 47(22), 3815-3821. https://doi.org/https://doi.org/10.1016/S0013-4686(02)00352-3 DOI: https://doi.org/10.1016/S0013-4686(02)00352-3
Myung, J., Kim, S.-D., Shin, T. H., Lee, D., Irvine, J. T. S., Moon, J., & Hyun, S.-H. (2015). Nano-composite structural Ni-Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs. J. Mater. Chem. A, 3(26), 13801-13806. https://doi.org/10.1039/C4TA06037G DOI: https://doi.org/10.1039/C4TA06037G
Nikolla, E., Schwank, J., & Linic, S. (2007). Promotion of the Long-Term Stability of Reforming Ni Catalysts by Surface Alloying. Journal of Catalysis, 250, 85-93. https://doi.org/10.1016/j.jcat.2007.04.020 DOI: https://doi.org/10.1016/j.jcat.2007.04.020
Nikolla, E., Schwank, J., & Linic, S. (2009). Direct Electrochemical Oxidation of Hydrocarbon Fuels on SOFCs: Improved Carbon Tolerance of Ni Alloy Anodes. Journal of The Electrochemical Society, 156(11), B1312. https://doi.org/10.1149/1.3208060 DOI: https://doi.org/10.1149/1.3208060
Novosel, B., Marinek, M., & Maek, J. (2012). Deactivation of Ni-YSZ material in dry methane and oxidation of various forms of deposited carbon. Journal of Fuel Cell Science and Technology, 9(6). https://doi.org/10.1115/1.4007272 DOI: https://doi.org/10.1115/1.4007272
Sarruf, B. J. M., Hong, J.-E. E., Steinberger-Wilckens, R., & de Miranda, P. E. V. (2020). Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels. International Journal of Hydrogen Energy, 45(8), 5297-5308. https://doi.org/10.1016/j.ijhydene.2019.04.075 DOI: https://doi.org/10.1016/j.ijhydene.2019.04.075
Singh, A., & Hill, J. M. (2012). Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. Journal of Power Sources, 214, 185-194. https://doi.org/10.1016/j.jpowsour.2012.04.062 DOI: https://doi.org/10.1016/j.jpowsour.2012.04.062
Takeguchi, T., Kikuchi, R., Yano, T., Eguchi, K., & Murata, K. (2003). Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catalysis Today, 84, 217-222. https://doi.org/10.1016/S0920-5861(03)00278-5 DOI: https://doi.org/10.1016/S0920-5861(03)00278-5
Troskialina, L., Arifin, N. A., Andarini, R. P., Muchtar, A., Dhir, A., & Steinberger-Wilckens, R. (2023). Effect of Sn loading variation on the electrochemical performance of dry internal reforming of biogas in solid oxide fuel cells. International Journal of Hydrogen Energy, 48(3), 1136-1145. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.10.020 DOI: https://doi.org/10.1016/j.ijhydene.2022.10.020
Troskialina, L., Dhir, A., & Steinberger-Wilckens, R. (2015). Improved Performance and Durability of Anode Supported SOFC Operating on Biogas. ECS Tran, 68, 2503-2513. DOI: https://doi.org/10.1149/06801.2503ecst
Troskialina, L., & Steinberger-Wilckens, R. (2019). The effects of Sn infiltration on dry reforming of biogas at solid oxide fuel cell operating conditions over Ni-YSZ catalysts. IOP Conference Series: Materials Science and Engineering, 509(1). https://doi.org/10.1088/1757-899X/509/1/012064 DOI: https://doi.org/10.1088/1757-899X/509/1/012064
Xie, Z., Zhao, H., Du, Z., Chen, T., Chen, N., Liu, X., & Skinner, S. J. (2012). Effects of Co Doping on the Electrochemical Performance of Double Perovskite Oxide Sr 2MgMoO 6-d as an Anode Material for Solid Oxide Fuel Cells. Journal of Physical Chemistry C, 116(17), 9734-9743. https://doi.org/10.1021/jp212505c DOI: https://doi.org/10.1021/jp212505c
Yusoff, W. N. A. W., Baharuddin, N. A., Somalu, M. R., Andanastuti Muchtar, & Samat, A. A. (2020). A Short Review on Selection of Electrodes Materials for Symmetrical Solid Oxide Fuel Cell. IOP Conference Series: Materials Science and Engineering, 957(1), 12049. https://doi.org/10.1088/1757-899X/957/1/012049 DOI: https://doi.org/10.1088/1757-899X/957/1/012049
Downloads
-
PDF
views: 135